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ABSTRACT 

It is proved that each n-dimensional centrally symmetric convex poly- 
hedron admits a 2-dimensional central section having at least 2n vertices. 
Some other related results are obtained and some unsolved problems are 
mentioned. 

The following conjecture of Joram Lindenstrauss was transmitted to me by 
Branko Griinbaum: 

(E) I f  P is an n-dimensional centrally symmetric convex polyhedron, 
then some 2-dimensional central section of P has at least 2n vertices. 

I present here a proof of this conjecture as well as a dual statement (I) about 
affine images of polyhedra. In fact, the simplest approach to (Z) seems to be by 
way of  (I), using the duality between sections and affine images as in [2, 3]. 

Let us begin with the proof of (I), where of course (Z) and (I) both require that 
n > 2 .  

(I) I f  P is an n-dimensional centrally symmetric convex polyhedron, then 
some 2-dimensional affine image of P has at least 2n vertices. 

Proof. The assertion is obvious for n = 2. Suppose it is known for n = k and 
consider the case n = k + 1, where we assume without loss of generality that P 
lies in a (k + 1)-dimensional real vector space E and is centered at the origin 
0 of E. We wish to show that some 2-dimensional linear image of P has at least 
2k + 2 vertices. Let V be the set of  all vertices of P and let ~ be a linear trans- 
formation of E onto a k-dimensional vector space F such that ~ is biunique on V. 
Then ~P is a k-dimensional centrally symmetric convex polyhedron, so (by the 
inductive hypothesis) there exists a linear transformation ~/' of F onto a 2-dimen- 
sional vector space G such that the convex polygon .Q' = q'~P has at least 2k 
vertices. 

Let ~ ( F ,  G) (resp. ~0(F ,  G)) denote the space of all linear transformations of 
F into G (resp. onto G); the spaces .~(E, G) and ~e0(E , G) are similarly defined. 
In the following paragraphs, it is convenient to topologize the spaces E, F, and G 
by means of Euclidean metrics, the spaces -~¢(F, G) and -~(E, G) by means of 
uniform norms, and the space ~ of all convex polygons in G by means of the 
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Hausdorff metric. However, at the cost of  some extra effort it would be possible 
to dispense with these assumptions and carry out the proof  for vector spaces 

over an arbitrary ordered field. 
Noting that the function ~,~P] ~ • ~e(F, G) maps £P(F, G) continuously into 

~ ,  that the function (number of vertices of K) ] K • ~ is lower semicontinuous 
on g(', and that the set J = (~k•Lo(F,G):~b is biunique on ~V} is a dense open 
subset of ~ ( F ,  G), we see the possibility of  choosing q in J close to ~/' such that 
the convex polygon Q = ~/¢P has at least 2k vertices. When Q has at least 2k + 2 
vertices, there is no problem. When Q has only 2k vertices, we shall produce in G 
another linear image Q + of  P which has more vertices than Q. 

Production of Q+ depends on the following simple fact: (?) 

I f  Q is a convex polygon in the plane G, A is the set of all vertices of Q, and B 

is a finite subset of Q ,.~ A, then there exists e > 0 such that whenever B + is a 
finite set for  which B + eg Q but B + lies in the e-neighborhood of B, then the 
polygon Q÷ = conv(A d B +) has more vertices than Q has. Here it is essential 
that the set B should not include any vertex of  Q, and this accounts for our  in- 
terest in transformations of E which are biunique on the set V of vertices of P. 

Suppose Q has only the 2k vertices ---ql . . . .  , +-qk. For each i there is a unique 
vertex Pi of  P such that r/¢pi = qi. Let H be a k-dimensional linear subspace of  E 
such that {Pl . . . .  ,Pk} C H and let ¢ denote the restriction of t/~ to H. Then of 
course ~(P 0 H) = Q. Let u • P ~ H, so that each point x of E admits a unique 
expression in the form x = x'  + x"u with x '  • H and x" • R (real numbers). For  
each point z • G, let the transformation ~b, e ~o (E ,  G) be defined as follows: 

4~,(x' + x"u) = ~x' + x"z .  

Note that with Zo = r/~u, we have 

¢~o(X' + x"u) = ~x' + x"rl~u = nCx' + x"~lCu = rl~(x' + x"u), so ¢ ,o=n~.  

Let Go denote the set of  all z e G for which the transformation ~bz is biunique 
on V. Then z o • Go, and we claim further that the set G ,-, G O is finite. Indeed, if 
z e G ~ Go there exist v • V and w • V such that v•  w but ~b,v = ~b:w, whence 
~(v' - w') = (w" - v")z. I f  v" = w", then ~v' = ~w' and r/~v = r/~w, contradicting 

the choice of  r/. If  v"=/=w", then z = ( w " - v " ) - l ~ ( v  ' -  w'). Thus there are only 

finitely many possibilities for z e G ~ Go. 
Let zl ~ Go ~ Q. Since Zo e Go and the set G ~ Go is finite, there exists zl/2 • Go 

such that the segments [z o, z~/2] and [z~/2, zl ]  both lie entirely in Go. Define 

z~ = ( 1 - 2 2 ) z  o+(22)z l /2  for 0 < 2 < 1 / 2 ,  and 

zx = ( 2 - 2 2 ) z x / 2 + ( 2 2 - 1 ) z x  for 1 / 2 < 2 < 1 .  

Then the function ~,aPl,~ • [0,1] is a continuous mapping of  [0,1] into ~ .  

Note that 
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~bzaP D ( ( H A P )  = Q for all 2 ~ [0, 1], and that 

~bzoP = ~/~P = Q while 

u ~ P  and ¢~1u = zl(~Q. 

Let p be the least upper bound of those 2 e [0,1] for which CzxP = Q. Then 
# < 1 and ¢z~P = Q, but there are values of 2 arbitrarily close to # for which Q is 
properly contained in the polygon ¢,aP. Of course CzxP = conv¢,~V for all 
2 e [0, 1], and since zu e Go we have 

~bz,(V "~ {+Pl  . . . . .  +- Pk}) = Q "~ {+- ql . . . . .  +- qk}- 

Applying the italicized statement ( t )  above, we see the existence of 2 close t o / t  
for which the convex polygon Q + = tk~xQ has more vertices than Q and hence, 
being centrally symmetric, has at least 2k + 2 vertices. The proof is now com- 
pleted by mathematical induct ion. |  

It seems worthwhile to provide a more metric form for (I). 
(H) I f  P is an n-dimensional centrally symmetric convex polyhedron in E' ,  

there is a 2-dimensional plane T in E n such that the orthogonal projection z~ of 
E" onto T carries P onto a convex polygon uP having at least 2n vertices. 

Proof. By (I) there is a linear transformation z of E" onto /~2 such that zP 
has at least 2n vertices. Let T 1 = z-1(0) and let T be the orthogonal supplement 
of T 1 in E'.  | 

Proof of (Z). Let P be an n-dimensional centrally symmetric convex poly- 
hedron, centered at the origin of an n-dimensional real vector space E. Let ( , )  be 
an inner product on E and let pO be the polar body { y ~ E : ( x , y )  < 1 for all 
x ~ P}. Then of course p0 is an n-dimensional centrally symmetric convex poly- 
hedron, and by (H) there exists a two-dimensional linear subspace T of E such 
that the convex polygon ztP° has at least 2n vertices, where u is the orthogonal 
projection of E onto T. Since 

T A ( P N T )  ° = T ~ c l c o n v ( P ° U T  O ) = T N ( P  ° + T O ) =  

T N ( riP° + TO) = ~ze°, 

it follows that the polygon P 0 T has at least 2n vertices. (The relevant basic 
results on the polarity o may be found in [1] and in [2] . ) |  

In the absence of symmetry assumptions, the methods used for (H) and (~) 
lead to similar results in which the number 2n is replaced by n + 1. In the non- 
symmetric version of (E), there exist 2-dimensional sections with at least n + 1 
vertices through each interior point of the n-dimensional convex polyhedron P. 

There remain many interesting problems concerning the numbers of faces of 
sections or projections of convex polyhedra. Some of these may be formulated as 
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follows. Suppose ~ is an indexed family ((P,, X,): t e I}, where, for each t ~ I, P, 

is an n-dimensional convex polyhedron in E" and X, is a nonempty subset of E". 
For 0 ~ j < k =<_ n, let Y.(~, k , j )  denote the largest number r such that for all 
t e l  and 

(*) for all x ~X,, there is a k-dimensional flat F through x for which the 
intersection P, f ' )F is a k-dimensional convex polyhedron having at least r 
j-dimensional faces. 

For various choices of ~ ,  and for given j < k, it would be of interest to deter- 
mine the number Y(~, k , j )  and to describe the "minimal members" of ~ - - t h a t  is, 
those members (P,,X3 of  P such that (*) fails for r > Z(~ ,k , j ) .  Of special 
interest are the family 6~, of all pairs (P, {x)) for which P is an n-dimensional 
convex polyhedron which is centrally symmetric about x, and the family ~ ,  of all 
pairs (P, int P) where P is an n-dimensional convex polyhedron. 

I am indebted to M. Perles for some helpful comments. 
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